Global Sampling for Sequential Filtering over Discrete State Space
نویسندگان
چکیده
In many situations, there is a need to approximate a sequence of probability measures over a growing product of finite spaces. Whereas it is in general possible to determine analytic expressions for these probability measures, the number of computations needed to evaluate these quantities grows exponentially thus precluding real-time implementation. Sequential Monte Carlo techniques (SMC), which consist in approximating the flow of probability measures by the empirical distribution of a finite set of particles, are attractive techniques for addressing this type of problems. In this paper, we present a simple implementation of the sequential importance sampling/resampling (SISR) technique for approximating these distributions; this method relies on the fact that, the space being finite, it is possible to consider every offspring of the trajectory of particles. The procedure is straightforward to implement, and well-suited for practical implementation. A limited Monte Carlo experiment is carried out to support our findings.
منابع مشابه
On sequential Monte Carlo sampling methods for Bayesian filtering ARNAUD DOUCET, SIMON GODSILL and CHRISTOPHE ANDRIEU
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework is developed that unifies many of the methods which have been proposed over the last few decades in several...
متن کاملOn sequential Monte Carlo sampling methods for Bayesian filtering
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework is developed that unifies many of the methods which have been proposed over the last few decades in several ...
متن کاملGaussian sum particle filtering for dynamic state space models
For dynamic systems, sequential Bayesian estimation requires updating of the filtering and predictive densities. For nonlinear and non-Gaussian models, sequential updating is not as straightforward as in the linear Gaussian model. In this paper, densities are approximated as finite mixture models as is done in the Gaussian sum filter. A novel method is presented, whereby sequential updating of ...
متن کاملNonlinear estimation for 60GHz millimeter-wave radar system based on Bayesian particle filtering
In the 60GHz millimeter-wave radar communication systems, the nonlinear power amplifier is inevitable. In order to combat this problem, a promising estimation algorithm based on the particle filtering (PF) is presented here. By employing the conception of Bayesian approximation and sequential importance sampling, this appealing Monte Carlo random sampling method can address this complicated sta...
متن کاملMonte Carlo Methods for Tempo Tracking and Rhythm Quantization
We present a probabilistic generative model for timing deviations in expressive music performance. The structure of the proposed model is equivalent to a switching state space model. The switch variables correspond to discrete note locations as in a musical score. The continuous hidden variables denote the tempo. We formulate two well known music recognition problems, namely tempo tracking and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004